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A B S T R A C T

The annihilation of radial and hyperbolic point defects within an infinite cylinder of radius 
R in nematic liquid crystals using Brownian molecular dynamics simulations is studied. 
Unlike some other studies, where they focus on individual phases of annihilation, this paper 
considers the entire course of annihilation, both before and after the collision of the two 
defects. After the collision, merging of defects, and building of a ring disclination structure, 
the system can experience a structural transition into another topologically equivalent 
nematic structure, triggered by the nucleation of the ring disclination structure. In the article, 
the condition under which the transition to the topologically equivalent final structure of the 
molecular arrangement occurs is quantitatively determined. In addition, a comparison of 
the temporal evolution of the final stable structure is discussed, where, based on a simple 
dissipation relation, we obtain an equation that agrees well with the simulation results.
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1. Introduction

Topological defects are very important structures in the fields of solid 
(and soft) matter physics and materials science. Research is carried out 
in various areas (Skogvoll et al.,2023) from Bose-Einstein condensates, 
via liquid crystals to solid crystals and metal alloys (Skogvoll et al., 
2023, Cheng et al.,2024, Gao et al., 2019). Even more, topological 
defects are a frequent subject of study in the fields of particle physics 
and even cosmology and string theory (Fumeron and Berche, 2023). In 
short, topological defects are universally present in practically the entire 
field of physics and the study of materials. Even the 2016 Nobel Prize in 
Physics was awarded to theoretical physicists whose work established 
the role of topology in understanding exotic forms of matter. In this 
paper, the focus is on the annihilation of topological defects in liquid 
crystals through Brownian molecular dynamics simulations. Liquid 
crystals are an effective tool for studying many phenomena, as they 
are easily accessible (their study is not associated with high costs) and 
responsive to various influences (temperature, density, external electric, 
and magnetic fields, etc.) (de Gennes et al.,1993). In this study, the focus 
is on liquid crystals in the so-called nematic phase. The liquid crystals 
are considered as elongated molecules, where the elongated axis in 

the average of several molecules is denoted by the unit vector  l


. Here              

2l ∈


  and { }2 3 : 1p p∈ =
    is the unit sphere. The liquid crystal

molecules are non-polar; therefore  l


 and l−


 have the same meaning. 

Let f  be the probability density of the molecular orientations through 
the liquid crystal sample. In the isotropic phase the orientations (as 
well as centers of mass) are randomly distributed over all directions. 
Therefore, in the isotropic hase, f  is a constant. In the nematic phase, 
however, there is a preferred direction (anisotropy), designated by 
a unit vector n , called director (field), where at the mesoscopic scale 
after averaging the preferential direction emerges. Defects are usually
described as small regions where the local director field ( )n r   exhibits
discontinuous change in orientation. Therefore, in that region, the 
director field cannot be uniquely defined (de Gennes et al.,1993). Such a 
singular region is isotropic, while a nonsingular region can be described 
as uniaxial in the nematic phase (de Gennes et al.,1993). In the nematic 

phase 
             

 is not constant and we can define a second-order tensor 
as (Virga, 1994)

2

( )M l l f l da⊗∫
  




1

Here ⊗  denotes the tensorial product of two vectors, and a  is the 

area measure on 2 . There can be shown (Virga, 1994) that ( ) 1Tr M = ,  

where Tr denotes the trace of a tensor, and TM M=  which tells us that 

( )f f l=

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M  is symmetric. In the isotropic phase, where f  is a constant, we get 

(Virga, 1994) 0
1
3

M M I= = , where I  denotes the unit tensor. To 

properly describe a phase transition, we have to define the order 
parameter. Order parameter must be some quantity which disappears 
in the phase not interesting to us (here this would be the isotropic 
phase) and have nonzero value in the other (in our case - nematic) 
phase. In the case of nematic liquid crystals (LC) the order parameter 
must be second-order tensor (de Gennes et al.,1993). Therefore, we 

define 0Q M M−  as order parameter. The order parameter Q  is a 
traceless and symmetric tensor and can in his eigenframe be represented 

as 
3

1

ˆ ˆi i i
i

Q e eλ
=

= ⊗∑ , where iλ  are the eigenvalues and îe  are the 

eigenvectors of the order parameter. Because Q  is traceless, there are 

only two independent eigenvalues e.g. ( )3 1 2λ λ λ= − + . Tensorial order 

parameter ( )Q r  is continuous everywhere including the core of a defect 

(de Gennes et al.,1993). In contrast to ( )n r   it can smoothly describe 
changes between the isotropic, uniaxial, and biaxial nematic states. If as 
in our case the molecules of LC are considered as elongated molecules 
or “sticks”, there is only one independent eigenvalue. This is then so-
called uniaxial approximation of the system. For uniaxial system we can 
write the order parameter tensor as (Virga, 1994)

1
3

Q s n n I = ⊗ − 
 
 

 2

Here 3̂n e=
  and 1s λ= − . For the uniaxial case we can write also 

2 1
3

3
2

s cos ϑ= −  (Virga, 1994), where ϑ  is the angle between  l


 and n . 

The brackets ...  represent average over the mesoscopic scale where n  
is defined.

Among widely used geometries, nematics in cylindrical capillaries 
exhibit a particularly rich diversity of structures. They primarily depend 
on molecular orientation at the walls of the confining capillary. The 
imposed orientation (anchoring) of the molecules at the lateral wall 
can be arbitrary, but in most cases, it is homeotropic. Here, the long 
axes of the molecules are oriented perpendicularly to the lateral wall. 
In cylindrical cavities with homeotropic anchoring, there are basically 
four different types of structures (Bradač et al.,1998). Two of them are 
depicted in Figure 1. On the Figure 1 (a) there is an escaped radial (ER) 
structure, where molecules approaching the cylindrical axis gradually 
“escape” from radial towards the axial direction, and (b) planar polar 
with two line defects (PPLD), where molecules are constrained to 
the azimuthal plane and the two line defects are parallel to the major 
cylinder axis. Those two structures are the only possible equilibrium 
end structures in the simulations, and they are topologically equal. 
The stability of the named structures is mostly influenced by an 
intermolecular potential, the size of the capillary, and the elastic 
properties of the confined LC system.

On Figure 1 we can see the planar configurations of the director 

field ( )n r  . Here we can write 1 2ˆ ˆcos sinn e eψ ψ= +
 . Suppose that n  is 

continuous everywhere in the plane except at the points where defects 
are expected. Say that one of such points is P and the director field is 
continuous everywhere at least at the distance d from P. We consider 
then circle centered at P with the radius d. Let us traverse the circle 
in a counterclockwise way and count counterclockwise increments in 
angle ψ  as positive, and clockwise increments, as negative. Since n  is 

continuous on the circle the following contour integral must be multiple 
of 2π  (Skogvoll et al., 2023)

1
2

q dψ
π ∂

= ∫ 
 3

where q is the so-called topological charge (or winding number) 

and ∂  is a closed circuit in real space around P. Because of the 2Z  
symmetry the value of q is restricted to positive/negative integers or 
half-integers (Fumeron et al., 2023). The half-integer values are valid 

because of the head to tail invariance of the vectors  l


. Free energy of 

the system is proportional to 2q , therefore the half-integer winding 
numbers are preferred by the system and only distortions with the 
lowest winding number are observed (Fumeron et al., 2023).

Fig. 1. (a) The escaped radial (ER) end-configuration of the annihilation of 
radial and hyperbolic point defects. We see here the x-z plane cross-section 
of the capillary with horizontal z axis. (b) The planar polar end-configuration 
with two line defects (PPLD) where we see the x-y plane cross-section of the 
capillary. The line defects run along the long (z) axis, therefore on this cross-
section we only can see (encircled with two small circles) the defects with the 
winding number +1/2. 

In this paper, the focus is on the annihilation of two topological 
defects with opposite winding numbers (+1 and -1) where the defect 
with winding number +1 is sometimes called a radial defect (or 
hedgehog), and the defect with winding number -1 we often call 
the hyperbolic defect (or anti-hedgehog). Both defects are enclosed 
within the capillary of the radius R and length L with the homeotropic 

anchoring at the lateral walls. Here RR N b= , and ZL N b= , where RN  
and ZN  are integers in radial and z axis directions, respectively, and b is 
some typical size in the system (lattice spacing). In reality the radius of 
the capillary is about 100 nm, therefore 2b ≅  nm.

Most studies of the annihilation of topological defects focus on the 
pre-collision phase, in this case, the whole process can be simulated, 
even after the collision. 

Using a simple setup for the nucleation of a new phase, we calculate 
the critical value of the size of the joint defect after the collision of the 
two topological defects. This value gives us an approximation of the size 
of the so-called ring structures, so that the final topologically equivalent 
phase will develop. In the following, we also compare the spatial and 
temporal evolution of the final structure of the common annular defect 
after the collision. Using a simple dissipation relation, we obtain an 
equation that adequately approximates both the spatial and temporal 
evolution of the equilibrium final structure.

2. Modeling

In this study, the semi-microscopic approach is used. The dynamics 
of the system are studied with the Brownian orientational molecular 
dynamics enabling access to the macroscopic time scales. In this 
approach, the “molecules” interact via a generalized Van der Waals 
pairwise interaction, which to some extent considers the elastic 
anisotropy of nematic LC. The interaction of the pair of rod-like LC 

“molecules” at ir


 and j ir r r= + ∆
  

, oriented along ( )î ie r  and ( )ˆ j je r  is 
expressed as (Bradač et al., 2003)
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( )( )
2

6 2ˆ ˆ ˆ ˆ3
ij j ji ie e e eJV r r

r r
ε 

= −  ⋅ − ⋅∆ ⋅∆ 
 ∆ ∆ 

 

 

 4

Here J is the positive interaction constant and ε  measures the 
degree of orientational anisotropy. For 0ε =  the isotropic Maier-
Saupe (also called Lebwohl-Lasher) kind of interaction is obtained 
(Lebwohl et al., 1972). For 1ε =  the induced dipole – induced dipole 
interaction is established (Skačej et al., 1997). This model reasonably 
describes properties of nematic LCs for 0.3ε < . Note that the term 
molecule stands for a cluster of (real) molecules. Molecules are allowed 
to wander around the points of the 3D hexagonal lattice with spacing 
b. By such a box restricted dynamics the lattice induced ordering 
anisotropy is avoided known to appear in regular lattices. The local 
orientation of the i-th molecule in the laboratory frame is parametrized 

as ˆ ˆ ˆ ˆsin cos sin sin cosi x y ze e e e= Θ Φ + Θ Φ+ Θ , where angles ( ),ir tΘ = Θ
  

and ( ),ir tΦ = Φ


 are the variational parameters. 
The Brownian molecular dynamics method is used to follow the 

rotational dynamics of the system. At each time interval t∆  (one sweep) 
the molecular orientation of the system is updated in the local frame 
using

( ) ( ) ( ) ( )
( )

( )
( )

,, ,
l

l l ij ij l
i i r il

j i

D V
r t t r t t

kT≠

∂
Ψ + ∆ = Ψ − ∆ +Ψ

∂Ψ
∑   5

where ( )lΨ  represents either Θ  or Φ  and the superscript (l)
indicates the local molecular frame in which the rotation diffusion 

tensor ( )l
ijD  is diagonal. In calculations its eigenvalues are assumed to be 

degenerated and equal to D. The quantity k is the Boltzmann constant, 

T is the temperature, and ( )
,
l

r iΨ  is the stochastic variable obeying the 

Gaussian distribution. The distribution is centered at ( )
, 0l

r iΨ =  and the 

width of the distribution is proportional to T . The corresponding 
multiplicative constant is chosen to yield a correct equilibrium value 
of the nematic uniaxial order parameter. The summation in Eq. (5) is 
limited to neighbors within a sphere of a radius 2b. The shortest time 

interval t∆  of the model in the simulation is set by 0.01t D∆ = . For 
a typical nematic LC this ranges within the interval 0.001t∆ ≅  ms to 

0.1t∆ ≅  ms. depending on the size of a “molecule”. 
Following the Landau - de Gennes description of the system in 

nematic phase, we can use our tensorial order parameter Q  to write the 
free energy of the system in the following way (Fumeron et al., 2023)

( ) ( ) ( ) ( )22 3 2 3Tr Tr Tr E SF A T Q B Q C Q d r F F = − + + +  ∫  6

Here ( ) ( )0A T A T T∗= − , where 0A  is positive material constant, as 

well as B and C, and T∗  is nematic supercooling temperature. In (6)  

and SF  are elastic and surface free energies of the system, respectively. 
The elastic term in the above equation contains changes in the director 
field that are spatially dependent. This can be given by the gradient of 
the tensor order parameter, but a notation that emphasizes the three 
characteristic perturbations in the director field and is named after 
Frank-Oseen is commonly used (Fumeron et al., 2023)

( ) ( )2 22 331 2

2 2 2E
KK KF n n n n n d r = ∇ ⋅ + ⋅ ∇× + × ∇×  ∫

      7

where 1K , 2K  and 3K  are splay, twist and bend elastic constants, 
respectively. This expression is commonly simplified into so called “one 
constant approximation” (Virga, 1994)

2 3

2E
KF n d r = ∇  ∫

  8

Here  is single elastic constant, and for 5CB liquid crystal its value 
has been measured as approximately 10-11 N. Surface term enters the 
system with the boundary conditions (anchoring). Usually, the surface 
term can be expressed as (Virga, 1994)

( )2 2Tr
2S S
wF Q Q d r = −  ∫  9

where w is positive anchoring constant and  SQ  describes the nematic 
ordering imposed by the confining substrate. In the strong anchoring 

limit  w→∞  there is  SQ Q= . Therefore, because of strong anchoring 
conditions surface term is not important in the calculations.

3. Results and discussion

In the simulation, the values 2 rN  and ZN  are typically chosen between 
40 and 80. The cylinder axis is set along the z direction of the laboratory 
coordinate system. The lateral surface strongly enforces the neighboring 
molecules orientation along the surface normal, corresponding to 
the strong homeotropic anchoring. At a distance L along the cylinder 
axis, periodic boundary conditions are imposed simulating an infinite 
cylindrical capillary. The equilibrium nematic director configurations 
of the system are topologically equivalent escaped (ER) structure or 
planar structure with two line defects (PPLD) shown in Fig. 1. For radii 

above the critical value ( )CR ε  the ER structure is stable and the PPLD 

structure for ( )CR R ε< . The value of ( )CR ε  increases with ε . In our 

simulations (Bradač et al., 2003) ( )0 16CR b=  and ( )0.07 25CR b= . In 
the simulation initially the radial and the hyperbolic defect are placed 
on the cylinder axis. The initial separation of defects is close enough 
so that the interaction between defects is sufficiently strong. For such 
initial conditions, the collision of defects and further evolution into the 
final equilibrium structure are reached in a computationally accessible 
time. On the other hand, the separation is large enough so that the cores 
of defects reach their quasi-equilibrium configuration before being 
apparently influenced by each other. 

The defects, which are in the beginning of the simulation separated 

by ( )0
dξ  approaching their quasi-equilibrium configuration attain ring-

like structure where ring is formed about the core of the defect as a 
closed line defect, which shows some biaxial structure (Svetec et al., 
2006, De Luca et al., 2007). The ring structure of the both defects forms 
after several 1000 of steps in the simulation. The points belonging to 
the ring (red and blue ellipses in Figure 2) correspond to the largest 
connected local distortions in nematic ordering within the core of defect 
(Svetec et al., 2006). In the continuum Q-tensor representation by 

crossing the ring the exchange of Q  eigenvalues takes place. Therefore, 
in this case the core of defect exhibits locally roughly the cylindrical 
symmetry. Due to the confinement, after the creation the rings tend to 
orient with their symmetry axes perpendicularly to the cylinder axis, 
breaking the cylindrical symmetry of the structure. After a certain time, 
which depends on the coefficient ε , which represents the orientational 
anisotropy in the system, the two rings merge into one common ring 
structure. 

The further course of the simulation depends on the size of the 
overall ring structure thus obtained. At a constant capillary size, there 

is a certain threshold value of the parameter Cε , when for larger values 
of this parameter, the PPLD form is established as the final equilibrium 
structure in the capillary, and for values of ε  that are smaller than Cε , 
the final equilibrium structure is equal to ER. With the growing size of 
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the capillary also the value of Cε  increases. In Figure 3, we can see in the 
x-z plane a common ring structure after the collision of defects, which 
have been marked with a dotted black ellipse. If the long axis is in the 
z direction, we see that in the core of the common structure, molecules 
are oriented along the x axis. Now if the size of that ring structure is big 
enough, the PPLD end equilibrium structure will be formed. 

To the molecules inside the ring structure the free energy density Pf   
can be assigned and to the molecules outside the ring structure the free 

energy density Ef . In the following the ring structure together with the 
contained and mostly affected LC molecules is approximated as to be 
spherical nucleus. Thickness of the loop is neglected. The free energy of 
the system reads 

Fig 4. After the collision of defects, they merge into common ring structure with 
the inner PPLD-like structure. The ring structure is approximated by the sphere 
with the radius   . Free energy within the sphere is equal to    , the ER structure 
outside the sphere has the free energy    .

3 2 34 44
3 3P r r E rF f f Vπ πξ πξ σ ξ = + + − 

 
 10

Here σ is the surface tension of the emerged ring structure, and V is 

the volume of the whole capillary. If you write P Ef f f∆ = −  and minimize 

(10) with respect to rξ , you get ( ) 2C
r f

σξ = −
∆

, where the 0f∆ <  has to be 

considered. If you make another approximation 
         

, where K is  

suitable elastic constant and R correlation length, you get

( )
22C

r
R
K
σξ =  11

For PPLD ring structure with ( )C
r rξ ξ>  the final equilibrium PPLD 

structure in the whole capillary will evolve. For PPLD ring structures, 
smaller than this, the ring structure will diminish and disappear, and 
the end ER structure will form. 

In the following the time evolution and the dependence of the 
evolving PPLD end-structure on the degree of orientational anisotropy 
ε  will be investigated. For that purpose we establish the following 

dimensionless quantities: 1
C

t
t

τ = −  is the eigentime, where  Ct  is the so-

called collision time, that is the time of collision for point defects in 

Fig. 2. After about 1000-2000 simulation steps the defects attain their quasi-equilibrium structure. They form ring-like structure where the plane in which the ring 
lies is rotating about the long (z) axis. The ring structure of the radial defect is depicted as a red ellipse where the molecules within the ring structure are directed 
along y-axis (on the figure we see only dots), while the ring structure of the hyperbolic defect in the figure depicted as dotted blue ellipse is almost perpendicular to 
the x-axis and the molecules within the ring structure are directed along the x-axis.

Fig. 3. After the collision of radial and hyperbolic defects, a common structure is formed, where both rings of both defects merge into one common ring structure and 
the molecules surrounded by this ring form the core (nucleus) of the new PPLD phase, which must be large enough (compared to the size of the system) to extend to 
the entire system. If the resulting nucleus is too small, the nucleus begins to shrink and finally disappears, and the final equilibrium ER structure is formed.

Pf

Ef
rξ

2

Kf
R

∆ ≈
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different simulations; and r

R
ξµ = . For the annihilation of the closed 

line defects in the bulk there holds for the several systems 1/2
rξ τ∝  

(Pargellis et al., 1991), but in this case the results show more Lifshitz-
Slezov kind of dynamics (Lifshitz et al., 1981), therefore you can write 
the following non-dimensional dissipation relation

( )( )2 CDµµ ε ε ε
τ
∂

= −
∂

 12

Here D(ε) is a non-dimensional dissipation function, which depends 
on the interaction potential, and  Cε  is the “critical” value of the degree 
of orientational anisotropy, which separates the evolvement of the 
system into the ER or PPLD end-structure. The inner structure of the 
dissipation function will not be discussed here. Solving differential 
equation (12) you obtain

( ) ( ) ( ) ( )33
0, CDµ ε τ µ ε ε ε ε τ= + −  13

Here 0 µ  represents the relative radius of the ring structure at 0τ = . 
From the last equation you can infer that the ring structure in the case 

if  Cε ε<  would shrink in time and for the system where  Cε ε>  the ring 
structure would get larger. 

In the Figure 5 there are results of the simulation compared with the 
model introduced by the dissipation relation in (12). On the Figure 5 (a) 
there are the sizes of the ring structure after the collision of the defects 
at 0τ =  shown with the dots (in fact this is the graph of ( )0 µ ε ). In the 

simulations the threshold value for the coefficient  0.07Cε =  separating 
the ER and PPLD outcome of the simulation. On the Figure 5 (b) we 
have a temporal evolution of the ring structure after the collision. In the 
Figure 5 (b) we have two cases for ER end-structure and two cases for 
PPLD end-structure. For the ER structure the formed ring structure at 

0τ =  starts to decrease and eventually disappears, whereby on the other 
hand the ring structure evolving towards PPLD end-structure after the 
collision starts to grow.

4. Conclusion

In the paper, the numerical study of the annihilation of nematic point 
defects deep in the nematic phase is performed. The rod-like molecules, 
interacting via the generalized induced dipole-induced dipole potential 
are considered, whose elastic anisotropy is mainly characterized by 
a small positive dimensionless parameter ε. The time evolution of 
the system is governed via the Brownian molecular dynamics, which 
enables the access of macroscopic time scales. A local orientation of each 
molecule is determined by two angles, which represent the dynamic 
variational variables of the problem. Note that no symmetry constrains 

were imposed in simulations, where the number of molecules typically 
ranged between 104 and 106. Soon after the start of the simulation the 
defects form a ring-like structure, where the symmetry axis of the “rings” 
is perpendicular to the long axis of the capillary. In the course of time, 
the “rings” rotate about the long axis of the system. After the collision of 
defects, the size of emerged ring structure was followed dependent on 
the intermolecular potential, which was altered by different values of 
the orientational anisotropy coefficient ε. Increasing the orientational 
anisotropy coefficient, the size of emerging ring structure grows 
like 1/3 ε . Further the dynamics of the ring disclination structure was 
investigated using simple dissipation relation. The temporal evolution 
of emerged structure was also followed by numerical simulations. 
Dynamics is crucially affected by the intermolecular potential. It was 
found that growth and alternatively decay are faster as the orientational 
anisotropy coefficient  differs from  Cε . 
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