Advances in Projected Capacitive Touch Panels: Innovations in Materials and Fabrication Techniques

Authors

  • Saeideh Alipoori UNAM – Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye https://orcid.org/0000-0003-4776-7877
  • Milad Mehranpour Polymer Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran

DOI:

https://doi.org/10.30544/MMD60

Abstract

Touch panels are one of the most commonly used technologies in a wide range of applications, including mobile phones, tablets, and displays. Among the various types of touch panel sensors, projected capacitive touch panels (PCTPs) are the most popular due to their excellent optical performance, high durability, multi-touch functionality, and precise touch-point detection. A PCTP features a multi-layer structure consisting of two layers of electrode materials and an insulating adhesive layer. The patterning of touch panel conductors significantly impacts the performance, accuracy, and sensitivity of the touch panels. Indium tin oxide (ITO) is the most commonly employed transparent conductive material in touch panel technologies. However, its drawbacks, including the scarcity of indium, elevated cost, and intrinsic mechanical fragility, have been well recognized. Among the alternative materials for replacing ITO, poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) has emerged as a strong alternative because of its outstanding properties, such as high transparency, excellent conductivity, and mechanical flexibility. The traditional electrode patterning technique for PEDOT:PSS electrodes in touch panel applications is printing, which offers several advantages over conventional methods, including low cost, high accuracy, and rapid processing.

In this study, we review the recent advancements in PEDOT:PSS-based electrode patterning techniques for PCTPs, emphasizing printing technologies such as inkjet printing, screen printing, and other emerging methods. We evaluate their compatibility with PEDOT:PSS, technical challenges, performance metrics, and their role in replacing ITO. The paper also outlines future directions for the development of cost-effective, scalable, and flexible touch panel devices.

Keywords:

Projected capacitive touch panels, ITO, flexibility, patterning technique, PEDOT:PSS

References

Adler, R., and P. J. Desmares. "An economical touch panel using SAW absorption." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 34, no. 2 (1987): 195–201. https://doi.org/10.1109/T-UFFC.1987.26932

Akhtar, H., and R. Kakarala. "A comparative analysis of capacitive touch panel grid designs and interpolation methods." In Proceedings of the IEEE International Conference on Image Processing (ICIP) (2014a). https://doi.org/10.1109/ICIP.2014.7026172

Akhtar, H., and R. Kakarala. "A comparative analysis of capacitive touch panel grid designs and interpolation methods." In Proceedings of the IEEE International Conference on Image Processing (ICIP) (2014b). https://doi.org/10.1109/ICIP.2014.7026172

Andò, B., S. Baglio, A. R. Bulsara, T. Emery, V. Marletta, and A. Pistorio. "Low-cost inkjet printing technology for the rapid prototyping of transducers." Sensors 17, no. 4 (2017): 748. https://doi.org/10.3390/s17040748

Aslam, Z., V. Mittal, and N. Manglick. "Low power consumption in capacitive touch screen panel by changing scanning rate using equation and AI based proposal." In Proceedings of the 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) (2023). https://doi.org/10.1109/ICECCME57830.2023.10253431

Bae, S. H., and Y. S. Lee. "Highly parallel touch controller with high-speed weighted median noise reduction unit for on-cell type touch screen panel." In Proceedings of the International SoC Design Conference (ISOCC) (2015). https://doi.org/10.1109/ISOCC.2015.7401746

Barrett, G. L., and R. Omote. "Projected capacitive touch screens." Information Display (2010). https://doi.org/10.1002/j.2637-496X.2010.tb00229.x

Barrett, Gary L., and R. Omote. Projected Capacitive Touch Screens. Information Display Technology, Document No. 6500468.

Baxler, L. Capacitive Sensors Design and Application. New York: IEEE Press, 1997.

Bhalla, M. R., and A. V. Bhalla. "Comparative study of various touchscreen technologies." International Journal of Computer Applications 6, no. 8 (2010): 12–18. https://doi.org/10.5120/1097-1433

Bharadwaj, Y. S., and V. Sastry. "Analysis on sensors in a smart phone: a survey." Analysis 1, no. 9 (2014).

Calvert, P. "Inkjet printing for materials and devices." Chemistry of Materials 13, no. 10 (2001): 3299–3305. https://doi.org/10.1021/cm0101632

Cruz, S., D. Dias, J. C. Viana, and L. A. Rocha. "Inkjet printed pressure sensing platform for postural imbalance monitoring." IEEE Transactions on Instrumentation and Measurement 64, no. 10 (2015): 2813–2820. https://doi.org/10.1109/TIM.2015.2433611

Du, H., Y. Guo, D. Cui, S. Li, W. Wang, Y. Liu, … X. Dong. "Solution-processed PEDOT:PSS:GO/Ag NWs composite electrode for flexible organic light-emitting diodes." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 248 (2021): 119267. https://doi.org/10.1016/j.saa.2020.119267

Eaton, W. P., and J. H. Smith. "Micromachined pressure sensors: review and recent developments." Smart Materials and Structures 6, no. 5 (1997): 530. https://doi.org/10.1088/0964-1726/6/5/004

Elschner, A., S. Kirchmeyer, W. Lovenich, U. Merker, and K. Reuter. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer. Boca Raton: CRC Press, 2010. https://doi.org/10.1201/b10318

Elsokary, A., M. Soliman, F. Abulfotuh, S. Ebrahim, T. Sadat-Shafai, and M. Karim. "Fabrication of composite transparent conductive electrodes based on silver nanowires." Scientific Reports 14, no. 1 (2024): 3045. https://doi.org/10.1038/s41598-024-53286-8

Faller, L.-M., S. Mühlbacher-Karrer, and H. Zangl. "Inkjet-printing rapid prototyping of a robust and flexible capacitive touch panel." In Proceedings of the IEEE SENSORS Conference (2016a). https://doi.org/10.1109/ICSENS.2016.7808915

Faller, L.-M., S. Mühlbacher-Karrer, and H. Zangl. "Inkjet-printing rapid prototyping of a robust and flexible capacitive touch panel." In Proceedings of the IEEE SENSORS Conference (2016b). https://doi.org/10.1109/ICSENS.2016.7808915

Franco, M., V. Correia, P. Marques, F. Sousa, R. Silva, B. R. Figueiredo, … P. Costa. "Environmentally friendly graphene-based conductive inks for multitouch capacitive sensing surfaces." Advanced Materials Interfaces 8, no. 18 (2021): 2100578. https://doi.org/10.1002/admi.202100578

Fried, A., X. Zhang, J. Abrahamson, C. Wang, J. Luo, R. Monson, … T.-L. Chang. "Latest advances in silver nanowire based touch module reliability." In Proceedings of the 15th IEEE International Conference on Nanotechnology (IEEE-NANO) (2015). https://doi.org/10.1109/NANO.2015.7388838

Guo, T., D. Zhou, S. Deng, M. Jafarpour, J. Avaro, A. Neels, … C. Zhang. "Rational design of Ti₃C₂Tₓ MXene inks for conductive, transparent films." ACS Nano 17, no. 4 (2023): 3737–3749. https://doi.org/10.1021/acsnano.2c11180

Han, S. Y., D. C. Kim, B. Cho, K. S. Jeon, S. M. Seo, M. S. Seo, … S. H. Yang. "A highly sensitive and low-noise IR photosensor based on a-SiGe as a sensing and noise filter: Toward large-sized touch-screen LCD panels." Journal of the Society for Information Display 19, no. 12 (2011): 855–860. https://doi.org/10.1889/JSID19.12.855

Hoque, N., E. Claros, and J. Bender. "Capacitive touch dielectric constant validation." In Proceedings of the Systems and Information Engineering Design Symposium (SIEDS) (2024). https://doi.org/10.1109/SIEDS61124.2024.10534639

Hotelling, S. P., and B. R. Land. "Double-sided touch-sensitive panel with shield and drive combined layer." Google Patents (2011).

Hu, L., H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui. "Scalable coating and properties of transparent, flexible, silver nanowire electrodes." ACS Nano 4, no. 5 (2010): 2955–2963. https://doi.org/10.1021/nn1005232

Hu, X. M. "Photolithography technology in electronic fabrication." In Proceedings of the International Conference on Power, Energy and Mechatronics (IPEMEC) (2015). https://doi.org/10.2991/ipemec-15.2015.156

Hwang, T.-H., W.-H. Cui, I.-S. Yang, and O.-K. Kwon. "A highly area-efficient controller for capacitive touch screen panel systems." IEEE Transactions on Consumer Electronics 56, no. 2 (2010): 1115–1122. https://doi.org/10.1109/TCE.2010.5506047

Karagiorgis, X., D. Shakthivel, G. Khandelwal, R. Ginesi, P. J. Skabara, and R. Dahiya. "Highly conductive PEDOT:PSS:Ag nanowire-based nanofibers for transparent flexible electronics." ACS Applied Materials & Interfaces 16, no. 15 (2024): 19551–19562. https://doi.org/10.1021/acsami.4c00682

Kaur, G., and A. Saxena. "3D printed capacitive ink sensors for sustainable electronics." Transdisciplinary Journal of Engineering & Science 15 (2024).

Khrapach, I., F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, and M. F. Craciun. "Novel highly conductive and transparent graphene-based conductors." Advanced Materials 24, no. 21 (2012): 2844–2850. https://doi.org/10.1002/adma.201200489

Kim, S., M. Oh, D. Yoo, and K. Cho. "Touched image transmission of a high resolution touch panel using MIPI CSI-2 for kiosk applications." In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE) (2017).

Kim, S., W. Choi, W. Rim, Y. Chun, H. Shim, H. Kwon, … S. Lee. "A highly sensitive capacitive touch sensor integrated on a thin-film-encapsulated active-matrix OLED for ultrathin displays." IEEE Transactions on Electron Devices 58, no. 10 (2011): 3609–3615. https://doi.org/10.1109/TED.2011.2162844

Kyoung, K., and R. Hattori. "Electromagnetic field analysis of capacitive touch panels." Journal of Information Display 15, no. 3 (2014): 145–155. https://doi.org/10.1080/15980316.2014.947389

Lee, C.-J., D.-Y. Kim, J. K. Park, J. T. Kim, J.-H. Chun, J.-B. Kim, … G.-C. Hwang. "A characterization method for projected capacitive touch screen panel using 3-port impedance measurement technique." In Proceedings of the IEEE SENSORS Conference (2015).

Lee, H.-M., and S.-H. Ko. "Advancements in capacitive touch system and stylus technologies." Journal of the Korean Institute of Electrical and Electronic Material Engineers 37, no. 5 (2024): 465–475.

Lee, J., M. T. Cole, J. C. S. Lai, and A. Nathan. "An analysis of electrode patterns in capacitive touch screen panels." Journal of Display Technology 10, no. 5 (2014): 362–366. https://doi.org/10.1109/JDT.2014.2303980

Lee, S. J., Y. Kim, J.-Y. Hwang, J.-H. Lee, S. Jung, H. Park, … H. Kim. "Flexible indium-tin oxide crystal on plastic substrates supported by graphene monolayer." Scientific Reports 7, no. 1 (2017): 3131. https://doi.org/10.1038/s41598-017-02265-3

Lee, S.-H., J.-S. An, S.-K. Hong, and O.-K. Kwon. "A highly linear and accurate fork-shaped electrode pattern for large-sized capacitive touch screen panels." IEEE Sensors Journal 18, no. 15 (2018): 6345–6351. https://doi.org/10.1109/JSEN.2018.2836340

Li, Z., Y. Li, W. Zhao, Y. Feng, B. Zhou, and C. Liu. "Flexible, hierarchical MXene@SWNTs transparent conductive film with multi-source thermal response for electromagnetic interference shielding." Composites Science and Technology 249 (2024): 110484. https://doi.org/10.1016/j.compscitech.2024.110484

Lim, D.-H., J.-E. Park, and D.-K. Jeong. "A low-noise differential front-end and its controller for capacitive touch screen panels." In Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (2012). https://doi.org/10.1109/ESSCIRC.2012.6341302

Lin, C.-L., T.-C. Chu, C.-E. Wu, Y.-M. Chang, T.-C. Lin, J.-F. Chen, … W.-C. Chiu. "Tracking touched trajectory on capacitive touch panels using an adjustable weighted prediction covariance matrix." IEEE Transactions on Industrial Electronics 64, no. 6 (2017): 4910–4916. https://doi.org/10.1109/TIE.2017.2669887

Lin, L., and W. Chien. "Emerging touch techniques in smart handheld devices." In Proceedings of the International Symposium on VLSI Design, Automation, and Test (VLSI-DAT) (2012). https://doi.org/10.1109/VLSI-DAT.2012.6212584

Lipomi, D. J., J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander, and Z. Bao. "Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates." Chemistry of Materials 24, no. 2 (2012): 373–382. https://doi.org/10.1021/cm203216m

Liu, H., Z. Huang, T. Chen, X. Su, Y. Liu, and R. Fu. "Construction of 3D MXene/silver nanowire aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity." Chemical Engineering Journal 427 (2022): 131540. https://doi.org/10.1016/j.cej.2021.131540

Liu, S.-Y., W.-H. Li, Y.-J. Wang, J.-G. Lu, and H.-P. D. Shieh. "One-glass single ITO layer solution for large size projected-capacitive touch panels." Journal of Display Technology 11, no. 9 (2015): 725–729. https://doi.org/10.1109/JDT.2015.2432796

Liu, W., R. Liu, P. Yu, L. Feng, and X. Guo. "Device/circuit mixed-mode simulations for analysis and design of projected-capacitive touch sensors." Journal of Display Technology 11, no. 2 (2015): 204–208. https://doi.org/10.1109/JDT.2014.2370453

Lövenich, W. "PEDOT—properties and applications." Polymer Science Series C 56, no. 1 (2014): 135–143. https://doi.org/10.1134/S1811238214010068

Luo, S., E. Lian, J. He, and J. C. deMello. "Flexible transparent electrodes formed from template-patterned thin-film silver." Advanced Materials 36, no. 20 (2024): 2300058. https://doi.org/10.1002/adma.202300058

Ma, S., F. Ribeiro, K. Powell, J. Lutian, C. Møller, T. Large, and J. Holbery. "Fabrication of novel transparent touch sensing device via drop-on-demand inkjet printing technique." ACS Applied Materials & Interfaces 7, no. 39 (2015): 21628–21633. https://doi.org/10.1021/acsami.5b04717

Martins, J. P. A. "Design and fabrication by inkjet printing of electrodes for electromyography." (2013).

Matic, V., L. Liedtke, T. Guenther, A. Buelau, A. Ilchmann, J. Keck, … H. Kueck. "Inkjet printed differential mode touch and humidity sensors on injection molded polymer packages." In Proceedings of the IEEE SENSORS Conference (2014). https://doi.org/10.1109/ICSENS.2014.6985485

Miedl, F., and T. Tille. "3-D surface-integrated touch-sensor system for automotive HMI applications." IEEE/ASME Transactions on Mechatronics 21, no. 2 (2015): 787–794. https://doi.org/10.1109/TMECH.2015.2466455

Mikkonen, R., A. Koivikko, T. Vuorinen, V. Sariola, and M. Mäntysalo. "Inkjet-printed, nanofiber-based soft capacitive pressure sensors for tactile sensing." IEEE Sensors Journal 21, no. 23 (2021): 26286–26293. https://doi.org/10.1109/JSEN.2021.3085128

Mitra, D., K. Y. Mitra, R. Thalheim, and R. Zichner. "Inkjet-printed flexible thin-film thermal sensors for detecting elevated temperature range." Physica Status Solidi (a) 221, no. 4 (2024): 2300562. https://doi.org/10.1002/pssa.202300562

Niu, H., H. Li, N. Li, H. Niu, Y. Li, S. Gao, and G. Shen. "Fringing-effect-based capacitive proximity sensors." Advanced Functional Materials 34, no. 51 (2024): 2409820. https://doi.org/10.1002/adfm.202409820

Palma, G., N. Pourjafarian, J. Steimle, and P. Cignoni. "Capacitive touch sensing on general 3D surfaces." ACM Transactions on Graphics (TOG) 43, no. 4 (2024): 1–20. https://doi.org/10.1145/3658185

Prendergast, P. "SNR measurement realities for capacitive touchscreens." Electronic Design (December 2011). http://www.electronicdesign.com

Raman, V., Y.-H. Cho, H.-M. Kim, Y.-J. Kim, H.-M. Sim, and H.-K. Kim. "Ag mesh network framework based nanocomposite for transparent conductive functional electrodes for capacitive touch sensor and thin film heater." Ceramics International 47, no. 19 (2021): 27230–27240. https://doi.org/10.1016/j.ceramint.2021.06.145

Ruan, J.-Y., P. C.-P. Chao, and W.-D. Chen. "A multi-touch interface circuit for a large-sized capacitive touch panel." In Proceedings of the IEEE SENSORS Conference (2010). https://doi.org/10.1109/ICSENS.2010.5689881

Sakthivelpathi, V., T. Li, Z. Qian, C. Lee, Z. Taylor, and J.-H. Chung. "Advancements and applications of micro and nanostructured capacitive sensors: a review." Sensors and Actuators A: Physical (2024): 115701. https://doi.org/10.1016/j.sna.2024.115701

Sarwar, M. S., R. Ishizaki, K. Morton, C. Preston, T. Nguyen, X. Fan, … R. Qiu. "Touch, press and stroke: a soft capacitive sensor skin." Scientific Reports 13, no. 1 (2023): 17390. https://doi.org/10.1038/s41598-023-43714-6

Semiconductor Lithography. "Photolithography – the basic process." (2006–2017). http://www.lithoguru.com/scientist/lithobasics.html

Singh, M., H. M. Haverinen, P. Dhagat, and G. E. Jabbour. "Inkjet printing process and its applications." Advanced Materials 22, no. 6 (2010): 673–685. https://doi.org/10.1002/adma.200901141

Sridhar, A., T. Blaudeck, and R. R. Baumann. "Inkjet printing as a key enabling technology for printed electronics." Material Matters 6, no. 1 (2011): 12–15.

Sun, C., Z. Wang, W. Cao, G. Gao, L. Yang, J. Han, and J. Zhu. "Preparation of brittle ITO microstructures using laser-induced forward transfer technology." Chemical Engineering Journal 496 (2024): 153745. https://doi.org/10.1016/j.cej.2024.153745

Sun, Z., M. Zhang, and X. Sun. "Integrate electroadhesion tactile feedback with projected capacitive touchscreen using semiconductor coating." IEEE Transactions on Instrumentation and Measurement (2024). https://doi.org/10.1109/TIM.2024.3497059

Teichler, A., J. Perelaer, and U. S. Schubert. "Inkjet printing of organic electronics: comparison of deposition techniques and state-of-the-art developments." Journal of Materials Chemistry C 1, no. 10 (2013): 1910–1925. https://doi.org/10.1039/c2tc00255h

Triambulo, R. E., H.-G. Cheong, G.-H. Lee, I.-S. Yi, and J.-W. Park. "A transparent conductive oxide electrode with highly enhanced flexibility achieved by controlled crystallinity by incorporating Ag nanoparticles on substrates." Journal of Alloys and Compounds 620 (2015): 340–349. https://doi.org/10.1016/j.jallcom.2014.09.159

Van De Groep, J., P. Spinelli, and A. Polman. "Transparent conducting silver nanowire networks." Nano Letters 12, no. 6 (2012): 3138–3144. https://doi.org/10.1021/nl301045a

Waferworld. "Photolithography: its importance in semiconductor manufacturing." (2016). https://www.waferworld.com/photolithography-its-importance-in-semiconductor-manufacturing/

Walker, G. "A review of technologies for sensing contact location on the surface of a display." Journal of the Society for Information Display 20, no. 8 (2012): 413–440. https://doi.org/10.1002/jsid.100

Walker, G. "Part 1: Fundamentals of projected capacitive touch technology." Intel Corporation, SID Display Week 14 (2016): v1.

Wen, Y., L. Chen, and G. Wan. "A simulation and evaluation method to estimate the capacitive effect on electrode of touch sensors." IEEE Access (2024). https://doi.org/10.1109/ACCESS.2024.3357511

Wijshoff, H. "The dynamics of the piezo inkjet printhead operation." Physics Reports 491, no. 4 (2010): 77–177. https://doi.org/10.1016/j.physrep.2010.03.003

Wu, C.-C. "Highly flexible touch screen panel fabricated with silver-inserted transparent ITO triple-layer structures." RSC Advances 8, no. 22 (2018): 11862–11870. https://doi.org/10.1039/C7RA13550E

Wu, K., J. Zhang, Y. Li, X. Wang, Y. Liu, Q. Yu, and T. Chen. "Design of AM self-capacitive transparent touch panel based on a-IGZO thin-film transistors." IEEE Access 8 (2020): 76929–76934. https://doi.org/10.1109/ACCESS.2020.2989435

Wu, W., X. Zhang, W. Xu, T. He, T. Zhang, and J. Hao. "Lithium-ion-doped eutectogel for surface-capacitive sensing touch panel." ACS Applied Materials & Interfaces (2024). https://doi.org/10.1021/acsami.4c04386

Xia, Y., B. P. Yalagala, A. S. Karimullah, H. Heidari, and R. Ghannam. "Beyond flexibility: transparent silver nanowire electrodes on patterned surfaces for reconfigurable devices." Advanced Engineering Materials 26, no. 1 (2024): 2301165. https://doi.org/10.1002/adem.202301165

Xie, Q., C. Yang, Z. Zhang, and R. Zhang. "High performance silver nanowire based transparent electrodes reinforced by conductive polymer adhesive." In Proceedings of the 16th International Conference on Electronic Packaging Technology (ICEPT) (2015). https://doi.org/10.1109/ICEPT.2015.7236779

Xu, C., Z. Li, T. Hang, Y. Chen, T. He, X. Li, … Z. Wu. "Multi-scale MXene/silver nanowire composite foams with double conductive networks for multifunctional integration." Advanced Science 11, no. 30 (2024): 2403551. https://doi.org/10.1002/advs.202403551

Yano Research Institute. "Capacitive touch panel (touchscreen)/components, global market: key research findings 2013." July 11, 2013. https://yanoresearch.com/press/pdf/1117.pdf

Zhan, S., T. Wei, B. Li, W. Liu, and Q. Chen. "A touch sensor controller IC adopting differential measurement for projected capacitive touch panel systems." In Proceedings of the 12th IEEE International Conference on Computer and Information Technology (2012). https://doi.org/10.1109/CIT.2012.106

Zheng, J., Y. Chen, Z. Wu, Y. Wang, and L. Wang. "Integration of flexible touch panels and machine learning: applications and techniques." Advanced Intelligent Systems 6, no. 3 (2024): 2300560. https://doi.org/10.1002/aisy.202300560

Zuk, S., A. Pietrikova, and I. Vehec. "Capacitive touch sensor." Microelectronics International 35, no. 3 (2018): 153–157. https://doi.org/10.1108/MI-12-2017-0071

Downloads

Published

20-08-2025

Issue

Section

Review Paper